17 research outputs found

    Novel Findings about Double-Loaded Curcumin-in-HPβcyclodextrin-in Liposomes: Effects on the Lipid Bilayer and Drug Release

    Get PDF
    In this study, the encapsulation of curcumin (Cur) in “drug-in-cyclodextrin-in-liposomes (DCL)” by following the double-loading technique (DL) was proposed, giving rise to DCL–DL. The aim was to analyze the effect of cyclodextrin (CD) on the physicochemical, stability, and drug-release properties of liposomes. After selecting didodecyldimethylammonium bromide (DDAB) as the cationic lipid, DCL–DL was formulated by adding 2-hydroxypropyl-α/β/γ-CD (HPβCD)–Cur complexes into the aqueous phase. A competitive effect of cholesterol (Cho) for the CD cavity was found, so cholesteryl hemisuccinate (Chems) was used. The optimal composition of the DCL–DL bilayer was obtained by applying Taguchi methodology and regression analysis. Vesicles showed a lower drug encapsulation efficiency compared to conventional liposomes (CL) and CL containing HPβCD in the aqueous phase. However, the presence of HPβCD significantly increased vesicle deformability and Cur antioxidant activity over time. In addition, drug release profiles showed a sustained release after an initial burst effect, fitting to the Korsmeyer-Peppas kinetic model. Moreover, a direct correlation between the area under the curve (AUC) of dissolution profiles and flexibility of liposomes was obtained. It can be concluded that these “drug-in-cyclodextrin-in-deformable” liposomes in the presence of HPβCD may be a promising carrier for increasing the entrapment efficiency and stability of Cur without compromising the integrity of the liposome bilayer

    Fucoxanthin-Containing Cream Prevents Epidermal Hyperplasia and UVB-Induced Skin Erythema in Mice

    Get PDF
    Microalgae represent a source of bio-active compounds such as carotenoids with potent anti-inflammatory and antioxidant properties. We aimed to investigate the effects of fucoxanthin (FX) in both in vitro and in vivo skin models. Firstly, its anti-inflammatory activity was evaluated in LPS-stimulated THP-1 macrophages and TNF-α-stimulated HaCaT keratinocytes, and its antioxidant activity in UVB-irradiated HaCaT cells. Next, in vitro and ex vivo permeation studies were developed to determine the most suitable formulation for in vivo FX topical application. Then, we evaluated the effects of a FX-containing cream on TPA-induced epidermal hyperplasia in mice, as well as on UVB-induced acute erythema in hairless mice. Our results confirmed the in vitro reduction of TNF-α, IL-6, ROS and LDH production. Since the permeation results showed that cream was the most favourable vehicle, FX-cream was elaborated. This formulation effectively ameliorated TPA-induced hyperplasia, by reducing skin edema, epidermal thickness, MPO activity and COX-2 expression. Moreover, FX-cream reduced UVB-induced erythema through down-regulation of COX-2 and iNOS as well as up-regulation of HO-1 protein via Nrf-2 pathway. In conclusion, FX, administered in a topical formulation, could be a novel natural adjuvant for preventing exacerbations associated with skin inflammatory pathologies as well as protecting skin against UV radiation

    Preparation, characterization and evaluation of the anti-inflammatory activity of epichlorohydrin-β-cyclodextrin/curcumin binary systems embedded in a pluronic® /hyaluronate hydrogel

    Get PDF
    Curcumin (Cur) is an anti-inflammatory polyphenol that can be complexed with polymeric cyclodextrin (CD) to improve solubility and bioavailability. The aim of the present work was to prepare a CurCD hydrogel to treat inflammatory skin conditions. Epichlorohydrin-β-CD (EpiβCD) was used as polymeric CD. To characterize the binary system, solid-state and in-solution studies were performed. Afterwards, an experimental design was performed to optimize the hy-drogel system. Finally, the CurEpiβCD hydrogel system was tested for anti-inflammatory activity using a HaCat psoriasis cell model. Co-grinded Cur/EpiβCD binary system showed a strong interaction and Curcumin solubility was much improved. Its combination with Pluronic® F-127/hyalu-ronate hydrogel demonstrated an improvement in release rate and Curcumin permeation. After testing its anti-inflammatory activity, the system showed a significant reduction in IL-6 levels. Hy-drogel-containing CurEpiβCD complex is a great alternative to treat topical inflammatory diseases.Junta de Andalucía CTS214, CTS65

    Synergistic effect of acetazolamide-(2-hydroxy)propyl β-cyclodextrin in timolol liposomes for decreasing and prolonging intraocular pressure levels

    Get PDF
    The purpose of this study was to design, for the first time, a co-loaded liposomal formulation (CLL) for treatment of glaucoma including timolol maleate (TM) in the lipid bilayer and acetazolamide (Acz)-(2-hydroxy)propyl β-cyclodextrin (HPβCD) complexes (AczHP) solubilized in the aqueous core of liposomes. Formulations with TM (TM-L) and AczHP (AczHP-L), separately, were also prepared and characterized. A preliminary study comprising the Acz/HPβCD complexes and their interaction with cholesterol (a component of the lipid bilayer) was realized. Then, a screening study on formulation factors affecting the quality of the product was carried out following the design of the experiment methodology. In addition, in vitro release and permeation studies and in vivo lowering intraocular pressure (IOP) studies were performed. The results of the inclusion com-plexation behavior, characterization, and binding ability of Acz with HPβCD showed that HPβCD could enhance the water solubility of Acz despite the weak binding ability of the complex. Ch disturbed the stability and solubility parameters of Acz due to the fact of its competence by CD; thus, Chems (steroid derivative) was selected for further liposome formulation studies. The optimization of the lipid bilayer composition (DDAB, 0.0173 mmol and no double loading) and the extrusion as methods to reduce vesicle size were crucial for improving the physico-chemical properties and encapsulation efficiency of both drugs. In vitro release and permeation studies demonstrated that the CLL formulation showed improvement in in vitro drug release and permeation compared to the liposomal formulations with a single drug (TM-L and AczHP-L) and the standard solutions (TM-S and AczHP-S). CLL showed high efficacy in reducing and prolonging IOP, suggesting that the synergistic effect of TM and Acz on aqueous humor retention and the presence of this cyclodextrin and liposomes as permeation enhancers are responsible for the success of this strategy of co-loading for glaucoma therapy.Junta de Andalucía 2017/CTS214Universidad de Sevilla PPI546/202

    Topical Application of Glycolipids from Isochrysis galbana Prevents Epidermal Hyperplasia in Mice

    Get PDF
    Chronic inflammatory skin diseases such as psoriasis have a significant impact on society. Currently, the major topical treatments have many side effects, making their continued use in patients difficult. Microalgae have emerged as a source of bio-active molecules such as glycolipids with potent anti-inflammatory properties. We aimed to investigate the effects of a glycolipid (MGMG-A) and a glycolipid fraction (MGDG) obtained from the microalga Isochrysis galbana on a TPA-induced epidermal hyperplasia murine model. In a first set of experiments, we examined the preventive effects of MGMG-A and MGDG dissolved in acetone on TPA-induced hyperplasia model in mice. In a second step, we performed an in vivo permeability study by using rhodamine-containing cream, ointment, or gel to determinate the formulation that preserves the skin architecture and reaches deeper. The selected formulation was assayed to ensure the stability and enhanced permeation properties of the samples in an ex vivo experiment. Finally, MGDG-containing cream was assessed in the hyperplasia murine model. The results showed that pre-treatment with acetone-dissolved glycolipids reduced skin edema, epidermal thickness, and pro-inflammatory cytokine production (TNF-α, IL-1β, IL-6, IL-17) in epidermal tissue. The in vivo and ex vivo permeation studies showed that the cream formulation had the best permeability profile. In the same way, MGDG-cream formulation showed better permeation than acetone-dissolved preparation. MGDG-cream application attenuated TPA-induced skin edema, improved histopathological features, and showed a reduction of the inflammatory cell infiltrate. In addition, this formulation inhibited epidermal expression of COX-2 in a similar way to dexamethasone. Our results suggest that an MGDG-containing cream could be an emerging therapeutic strategy for the treatment of inflammatory skin pathologies such as psoriasis.Ministerio de Economía y Competitividad IPT-2012-1370-060000Junta de Andalucía P12-AGR-43

    Cholesterol levels affect the performance of aunps-decorated thermo-sensitive liposomes as nanocarriers for controlled doxorubicin delivery

    Get PDF
    Stimulus-responsive liposomes (L) for triggering drug release to the target site are particularly useful in cancer therapy. This research was focused on the evaluation of the effects of cholesterol levels in the performance of gold nanoparticles (AuNPs)-functionalized L for controlled doxorubicin (D) delivery. Their interfacial and morphological properties, drug release behavior against temperature changes and cytotoxic activity against breast and ovarian cancer cells were studied. Langmuir isotherms were performed to identify the most stable combination of lipid components. Two mole fractions of cholesterol (3.35 mol% and 40 mol%, L1 and L2 series, respectively) were evaluated. Thin-film hydration and transmembrane pH-gradient methods were used for preparing the L and for D loading, respectively. The cationic surface of L allowed the anchoring of negatively charged AuNPs by electrostatic interactions, even inducing a shift in the zeta potential of the L2 series. L exhibited nanometric sizes and spherical shape. The higher the proportion of cholesterol, the higher the drug loading. D was released in a controlled manner by diffusion-controlled mechanisms, and the proportions of cholesterol and temperature of release media influenced its release profiles. D-encapsulated L preserved its antiproliferative activity against cancer cells. The developed liposomal formulations exhibit promising properties for cancer treatment and potential for hyperthermia therapy.Ministerio de Ciencia e Innovación CTQ2014- 57515-C2-

    Claudio Faulí Trillo

    No full text

    Morphine: Present and future in the treatment of pain

    No full text
    Los analgésicos opiáceos son aquellos fármacos que tienen afinidad selectiva por los receptores opioides. Como consecuencia de esta activación, producida a nivel del Sistema Nervioso Central, son fármacos capaces de producir una analgesia de alta intensidad. Por su capacidad para aliviar el dolor, los analgésicos opioides tienen un papel muy importante en la terapéutica actual. La presente revisión describe y resume las propiedades fisicoquímicas, farmacocinéticas y farmacodinámicas más importantes de la morfina, primer analgésico narcótico utilizado en terapéutica y fármaco prototipo más empleado a la hora de aliviar o suprimir dolores de gran intensidad, cualesquiera que sea su localización. Finalmente, se describe la evolución de los sistemas de administración de morfina así como la tendencia actual de la investigación farmacéutica en este campo.Opiate analgesics are drugs having selective affinity to opioid receptors. Because of this activation these drugs may induce high intensity analgesia. Through their capacity for pain relief, opioid analgesics have a very important role in therapeutic. Present review describes and summarizes the most important physicochemical, pharmacokinetic and pharmacodynamic properties of the first analgesic used in therapeutic, morphine. It is the prototype drug to relieve or eliminate severe pains. Finally, the evolution of morphine administration systems and the actual tendence of research in this field is described
    corecore